61 research outputs found

    Re-engineering the ant colony optimization for CMP architectures

    Full text link
    [EN] The ant colony optimization (ACO) is inspired by the behavior of real ants, and as a bioinspired method, its underlying computation is massively parallel by definition. This paper shows re-engineering strategies to migrate the ACO algorithm applied to the Traveling Salesman Problem to modern Intel-based multi- and many-core architectures in a step-by-step methodology. The paper provides detailed guidelines on how to optimize the algorithm for the intra-node (thread and vector) parallelization, showing the performance scalability along with the number of cores on different Intel architectures, reporting up to 5.5x speedup factor between the Intel Xeon Phi Knights Landing and Intel Xeon v2. Moreover, parallel efficiency is provided for all targeted architectures, finding that core load imbalance, memory bandwidth limitations, and NUMA effects on data placement are some of the key factors limiting performance. Finally, a distributed implementation is also presented, reaching up to 2.96x speedup factor when running the code on 3 nodes over the single-node counterpart version. In the latter case, the parallel efficiency is affected by the synchronization frequency, which also affects the quality of the solution found by the distributed implementation.This work was partially supported by the Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities as well as European Commission FEDER funds under Grants TIN2015-66972-C5-3-R, RTI2018-098156-B-C53, TIN2016-78799-P (AEI/FEDER, UE), and RTC-2017-6389-5. We acknowledge the excellent work done by Victor Montesinos while he was doing a research internship supported by the University of Murcia.Cecilia-Canales, JM.; García Carrasco, JM. (2020). Re-engineering the ant colony optimization for CMP architectures. The Journal of Supercomputing (Online). 76(6):4581-4602. https://doi.org/10.1007/s11227-019-02869-8S45814602766Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver Press, LebanonAkila M, Anusha P, Sindhu M, Selvan Krishnasamy T (2017) Examination of PSO, GA-PSO and ACO algorithms for the design optimization of printed antennas. In: IEEE Applied Electromagnetics Conference (AEMC)Dorigo M, Stützle T (2004) Ant colony optimization. A bradford book. The MIT Press, CambridgeCecilia JM, García JM, Nisbet A, Amos M, Ujaldón M (2013) Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 73(1):42–51Dawson L, Stewart I (2013) Improving ant colony optimization performance on the GPU using CUDA. In: IEEE Conference on Evolutionary Computation, pp 1901–1908Llanes A, Cecilia JM, Sánchez A, García JM, Amos M, Ujaldón M (2016) Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Comput 19(1):1–11Cecilia JM, Llanes A, Abellán JL, Gómez-Luna J, Chang L, Hwu WW (2018) High-throughput ant colony optimization on graphics processing units. J Parallel Distrib Comput 113:261–274Lloyd H, Amos M (2016) A Highly Parallelized and Vectorized Implementation of Max–Min Ant System on Intel Xeon Phi. In: IEEE computational intelligenceTirado F, Barrientos RJ, González P, Mora M (2017) Efficient exploitation of the Xeon Phi architecture for the ant colony optimization (ACO) metaheuristic. J Supercomput 73(11):5053–5070Montesinos V, García JM (2018) Vectorization strategies for ant colony optimization on intel architectures. Parallel Computing is Everywhere. IOS Press, Amsterdam, pp 400–409Lawler E, Lenstra J, Kan A, Shmoys D (1987) The Traveling salesman problem. Wiley, New YorkMontesinos V (June 2018) Performance analysis of ant colony optimization on intel architectures. Master’s Thesis, University of Murcia (Spain)Lloyd H, Amos M (2017) Analysis of independent roulette selection in parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 19–26Dorigo M (1992) Optimization, learning and natural algorithms. Ph.D. Thesis, Politecnico di Milano, ItalyDuran A, Klemm M (2012) The intel many integrated core architecture. In: Internal Conference on High Performance Computing and Simulation (HPCS), pp 365–366The OpenMP API specification for parallel programming. URL: https://www.openmp.org . [Last accessed 14 June 2018]The Message Passing Interface (MPI) standard. URL: http://www.mcs.anl.gov/research/projects/mpi/ . [Last accessed 15 June 2018]Vladimirov A, Asai R (2016) Clustering modes in Knights landing processors: developer’s guide. Colfax international. URL: https://colfaxresearch.com/knl-numa/ . [Last accessed: 16 June 2018]Intel Developer Zone. URL: https://software.intel.com/en-us/modern-code . [Last accessed 02 Oct 2018]Pearce M (2018) What is code modernization? Intel developer zone. URL: http://software.intel.com/en-us/articles/what-is-code-modernization . [Last accessed 15 Feb 2018]Stützle T ACOTSP v1.03. Last accessed 15 Feb 2018. URL: http://iridia.ulb.ac.be/~mdorigo/ACO/downloads/ACOTSP-1.03.tgzReinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3:376–384Crainic TG, Toulouse M (2003) Parallel strategies for meta-heuristics. State-of-the-art handbook in metaheuristics. Kluwer Academic Publishers, Dordrecht, pp 475–513Delévacq A, Delisle P, Gravel M, Krajecki M (2013) Parallel ant colony optimization on graphics processing units. J Parallel Distrib Comput 73(1):52–61Skinderowicz R (2016) The GPU-based parallel ant colony system. J Parallel Distrib Comput 98:48–60Zhou Y, He F, Hou N, Qiu Y (2018) Parallel ant colony optimization on multi-core SIMD CPUs. Future Gener Comput Syst 79:473–487Peake J, Amos M, Yiapanis P, Lloyd H (2018) Vectorized candidate set selection for parallel ant colony optimization. In: Genetic and Evolutionary Computation Conference, ACM, pp 1300–1306Stützle T (1998) Parallelization strategies for ant colony optimization. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature—PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, HeidelbergAbdelkafi O, Lepagnot J, Idoumghar L (2014) Multi-level parallelization for hybrid ACO. In: Siarry P, Idoumghar L, Lepagnot J (eds) Swarm Intelligence Based Optimization. ICSIBO 2014. Lecture Notes in Computer Science, vol 8472. Springer, ChamMichel R, Middendorf M (1998) An island model based ant system with lookahead for the shortest super sequence problem. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature— PPSN V. PPSN. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, HeidelbergChen L, Sun H, Wang S (2008) Parallel implementation of ant colony optimization on MPP. In: International Conference on Machine Learning and CyberneticsLin Y, Cai H, Xiao J, Zhang J (2007) Pseudo parallel ant colony optimization for continuous functions. In: International Conference on Natural Computatio

    Offloading strategies for Stencil kernels on the KNC Xeon Phi architecture: Accuracy versus performance

    Full text link
    [EN] The ever-increasing computational requirements of HPC and service provider applications are becoming a great challenge for hardware and software designers. These requirements are reaching levels where the isolated development on either computational field is not enough to deal with such challenge. A holistic view of the computational thinking is therefore the only way to success in real scenarios. However, this is not a trivial task as it requires, among others, of hardware¿software codesign. In the hardware side, most high-throughput computers are designed aiming for heterogeneity, where accelerators (e.g. Graphics Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs), etc.) are connected through high-bandwidth bus, such as PCI-Express, to the host CPUs. Applications, either via programmers, compilers, or runtime, should orchestrate data movement, synchronization, and so on among devices with different compute and memory capabilities. This increases the programming complexity and it may reduce the overall application performance. This article evaluates different offloading strategies to leverage heterogeneous systems, based on several cards with the firstgeneration Xeon Phi coprocessors (Knights Corner). We use a 11-point 3-D Stencil kernel that models heat dissipation as a case study. Our results reveal substantial performance improvements when using several accelerator cards. Additionally, we show that computing of an approximate result by reducing the communication overhead can yield 23% performance gains for double-precision data sets.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is jointly supported by the Fundacion Seneca (Agencia Regional de Ciencia y Tecnologia, Region de Murcia) under grants 15290/PI/2010 and 18946/JLI/13 and by the Spanish MINECO, as well as European Commission FEDER funds, under grants TIN2015-66972-C5-3-R and TIN2016-78799-P (AEI/ FEDER, UE). MH was supported by a research grant from the PRODEP under the Professional Development Program for Teachers (UAGro-197) MéxicoHernández, M.; Cebrián, JM.; Cecilia-Canales, JM.; García, JM. (2020). Offloading strategies for Stencil kernels on the KNC Xeon Phi architecture: Accuracy versus performance. International Journal of High Performance Computing Applications. 34(2):199-297. https://doi.org/10.1177/1094342017738352S199297342Michael Brown, W., Carrillo, J.-M. Y., Gavhane, N., Thakkar, F. M., & Plimpton, S. J. (2015). Optimizing legacy molecular dynamics software with directive-based offload. Computer Physics Communications, 195, 95-101. doi:10.1016/j.cpc.2015.05.004Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., & Burger, D. (2012). Power Limitations and Dark Silicon Challenge the Future of Multicore. ACM Transactions on Computer Systems, 30(3), 1-27. doi:10.1145/2324876.2324879Feng, L. (2015). Data Transfer Using the Intel COI Library. High Performance Parallelism Pearls, 341-348. doi:10.1016/b978-0-12-802118-7.00020-0Jeffers, J., & Reinders, J. (2013). Offload. Intel Xeon Phi Coprocessor High Performance Programming, 189-241. doi:10.1016/b978-0-12-410414-3.00007-4Rahman, R. (2013). Intel® Xeon Phi™ Coprocessor Architecture and Tools. doi:10.1007/978-1-4302-5927-5Reinders J, Jeffers J (2014) High Performance Parallelism Pearls, Multicore and Many-core Programming Approaches (Characterization and Auto-tuning of 3DFD). Morgan Kaufmann, pp. 377–396.Shareef, B., de Doncker, E., & Kapenga, J. (2015). Monte Carlo simulations on Intel Xeon Phi: Offload and native mode. 2015 IEEE High Performance Extreme Computing Conference (HPEC). doi:10.1109/hpec.2015.7322456Ujaldón, M. (2016). CUDA Achievements and GPU Challenges Ahead. Lecture Notes in Computer Science, 207-217. doi:10.1007/978-3-319-41778-3_20Wang, E., Zhang, Q., Shen, B., Zhang, G., Lu, X., Wu, Q., & Wang, Y. (2014). High-Performance Computing on the Intel® Xeon Phi™. doi:10.1007/978-3-319-06486-4Wende, F., Klemm, M., Steinke, T., & Reinefeld, A. (2015). Concurrent Kernel Offloading. High Performance Parallelism Pearls, 201-223. doi:10.1016/b978-0-12-802118-7.00012-

    Parallel implementation of fuzzy minimals clustering algorithm

    Get PDF
    Clustering aims to classify different patterns into groups called clusters. Many algorithms for both hard and fuzzy clustering have been developed to deal with exploratory data analysis in many contexts such as image processing, pattern recognition, etc. However, we are witnessing the era of big data computing where computing resources are becoming the main bottleneck to deal with those large datasets. In this context, sequential algorithms need to be redesigned and even rethought to fully leverage the emergent massively parallel architectures. In this paper, we propose a parallel implementation of the fuzzy minimals clustering algorithm called Parallel Fuzzy Minimal (PFM). Our experimental results reveal linear speed-up of PFM when compared to the sequential counterpart version, keeping very good classification quality.Ingeniería, Industria y Construcció

    Evaluation of Clustering Algorithms on HPC Platforms

    Full text link
    [EN] Clustering algorithms are one of the most widely used kernels to generate knowledge from large datasets. These algorithms group a set of data elements (i.e., images, points, patterns, etc.) into clusters to identify patterns or common features of a sample. However, these algorithms are very computationally expensive as they often involve the computation of expensive fitness functions that must be evaluated for all points in the dataset. This computational cost is even higher for fuzzy methods, where each data point may belong to more than one cluster. In this paper, we evaluate different parallelisation strategies on different heterogeneous platforms for fuzzy clustering algorithms typically used in the state-of-the-art such as the Fuzzy C-means (FCM), the Gustafson-Kessel FCM (GK-FCM) and the Fuzzy Minimals (FM). The experimental evaluation includes performance and energy trade-offs. Our results show that depending on the computational pattern of each algorithm, their mathematical foundation and the amount of data to be processed, each algorithm performs better on a different platform.This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and by the Spanish "Agencia Estatal de Investigacion" under grant PID2020-112827GB-I00 /AEI/ 10.13039/501100011033, and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5, by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by the "Conselleria de Educacion, Investigacion, Cultura y Deporte, Direccio General de Ciencia i Investigacio, Proyectos AICO/2020", Spain, under Grant AICO/2020/302.Cebrian, JM.; Imbernón, B.; Soto, J.; Cecilia-Canales, JM. (2021). Evaluation of Clustering Algorithms on HPC Platforms. Mathematics. 9(17):1-20. https://doi.org/10.3390/math917215612091

    High-throughput fuzzy clustering on heterogeneous architectures

    Full text link
    [EN] The Internet of Things (IoT) is pushing the next economic revolution in which the main players are data and immediacy. IoT is increasingly producing large amounts of data that are now classified as "dark data'' because most are created but never analyzed. The efficient analysis of this data deluge is becoming mandatory in order to transform it into meaningful information. Among the techniques available for this purpose, clustering techniques, which classify different patterns into groups, have proven to be very useful for obtaining knowledge from the data. However, clustering algorithms are computationally hard, especially when it comes to large data sets and, therefore, they require the most powerful computing platforms on the market. In this paper, we investigate coarse and fine grain parallelization strategies in Intel and Nvidia architectures of fuzzy minimals (FM) algorithm; a fuzzy clustering technique that has shown very good results in the literature. We provide an in-depth performance analysis of the FM's main bottlenecks, reporting a speed-up factor of up to 40x compared to the sequential counterpart version.This work was partially supported by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants TIN2016-78799-P (AEI/FEDER, UE), RTI2018-096384-B-I00, RTI2018-098156-B-C53 and RTC-2017-6389-5.Cebrian, JM.; Imbernón, B.; Soto, J.; García, JM.; Cecilia-Canales, JM. (2020). High-throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer Systems. 106:401-411. https://doi.org/10.1016/j.future.2020.01.022S401411106Waldrop, M. M. (2016). The chips are down for Moore’s law. Nature, 530(7589), 144-147. doi:10.1038/530144aCecilia, J. M., Timon, I., Soto, J., Santa, J., Pereniguez, F., & Munoz, A. (2018). High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2246-2257. doi:10.1109/tits.2018.2816741Singh, D., & Reddy, C. K. (2014). A survey on platforms for big data analytics. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0008-6Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., … Walker, P. (2017). The ARM Scalable Vector Extension. IEEE Micro, 37(2), 26-39. doi:10.1109/mm.2017.35Wright, S. A. (2019). Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems. Future Generation Computer Systems, 92, 900-902. doi:10.1016/j.future.2018.11.020Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering. ACM Computing Surveys, 31(3), 264-323. doi:10.1145/331499.331504Lee, J., Hong, B., Jung, S., & Chang, V. (2018). Clustering learning model of CCTV image pattern for producing road hazard meteorological information. Future Generation Computer Systems, 86, 1338-1350. doi:10.1016/j.future.2018.03.022Pérez-Garrido, A., Girón-Rodríguez, F., Bueno-Crespo, A., Soto, J., Pérez-Sánchez, H., & Helguera, A. M. (2017). Fuzzy clustering as rational partition method for QSAR. Chemometrics and Intelligent Laboratory Systems, 166, 1-6. doi:10.1016/j.chemolab.2017.04.006H.S. Nagesh, S. Goil, A. Choudhary, A scalable parallel subspace clustering algorithm for massive data sets, in: Proceedings 2000 International Conference on Parallel Processing, 2000, pp. 477–484.Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7Havens, T. C., Bezdek, J. C., Leckie, C., Hall, L. O., & Palaniswami, M. (2012). Fuzzy c-Means Algorithms for Very Large Data. IEEE Transactions on Fuzzy Systems, 20(6), 1130-1146. doi:10.1109/tfuzz.2012.2201485Flores-Sintas, A., Cadenas, J., & Martin, F. (1998). A local geometrical properties application to fuzzy clustering. Fuzzy Sets and Systems, 100(1-3), 245-256. doi:10.1016/s0165-0114(97)00038-9Soto, J., Flores-Sintas, A., & Palarea-Albaladejo, J. (2008). Improving probabilities in a fuzzy clustering partition. Fuzzy Sets and Systems, 159(4), 406-421. doi:10.1016/j.fss.2007.08.016Timón, I., Soto, J., Pérez-Sánchez, H., & Cecilia, J. M. (2016). Parallel implementation of fuzzy minimals clustering algorithm. Expert Systems with Applications, 48, 35-41. doi:10.1016/j.eswa.2015.11.011Flores-Sintas, A., M. Cadenas, J., & Martin, F. (2001). Detecting homogeneous groups in clustering using the Euclidean distance. Fuzzy Sets and Systems, 120(2), 213-225. doi:10.1016/s0165-0114(99)00110-4Wang, H., Potluri, S., Luo, M., Singh, A. K., Sur, S., & Panda, D. K. (2011). MVAPICH2-GPU: optimized GPU to GPU communication for InfiniBand clusters. Computer Science - Research and Development, 26(3-4), 257-266. doi:10.1007/s00450-011-0171-3Kaltofen, E., & Villard, G. (2005). On the complexity of computing determinants. computational complexity, 13(3-4), 91-130. doi:10.1007/s00037-004-0185-3Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. doi:10.1007/bf02289588Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., … Lin, C.-T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664-681. doi:10.1016/j.neucom.2017.06.053Woodley, A., Tang, L.-X., Geva, S., Nayak, R., & Chappell, T. (2019). Parallel K-Tree: A multicore, multinode solution to extreme clustering. Future Generation Computer Systems, 99, 333-345. doi:10.1016/j.future.2018.09.038Kwedlo, W., & Czochanski, P. J. (2019). A Hybrid MPI/OpenMP Parallelization of KK -Means Algorithms Accelerated Using the Triangle Inequality. IEEE Access, 7, 42280-42297. doi:10.1109/access.2019.2907885Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k-Means algorithm by GPUs. Journal of Computer and System Sciences, 79(2), 216-229. doi:10.1016/j.jcss.2012.05.004Saveetha, V., & Sophia, S. (2018). Optimal Tabu K-Means Clustering Using Massively Parallel Architecture. Journal of Circuits, Systems and Computers, 27(13), 1850199. doi:10.1142/s0218126618501992Djenouri, Y., Djenouri, D., Belhadi, A., & Cano, A. (2019). Exploiting GPU and cluster parallelism in single scan frequent itemset mining. Information Sciences, 496, 363-377. doi:10.1016/j.ins.2018.07.020Krawczyk, B. (2016). GPU-Accelerated Extreme Learning Machines for Imbalanced Data Streams with Concept Drift. Procedia Computer Science, 80, 1692-1701. doi:10.1016/j.procs.2016.05.509Fang, Y., Chen, Q., & Xiong, N. (2019). A multi-factor monitoring fault tolerance model based on a GPU cluster for big data processing. Information Sciences, 496, 300-316. doi:10.1016/j.ins.2018.04.053Tanweer, S., & Rao, N. (2019). Novel Algorithm of CPU-GPU hybrid system for health care data classification. Journal of Drug Delivery and Therapeutics, 9(1-s), 355-357. doi:10.22270/jddt.v9i1-s.244

    Towards Energy Efficiency in Heterogeneous Processors: Findings on Virtual Screening Methods

    Get PDF
    The integration of the latest breakthroughs in computational modeling and high performance computing (HPC) has leveraged advances in the fields of healthcare and drug discovery, among others. By integrating all these developments together, scientists are creating new exciting personal therapeutic strategies for living longer that were unimaginable not that long ago. However, we are witnessing the biggest revolution in HPC in the last decade. Several graphics processing unit architectures have established their niche in the HPC arena but at the expense of an excessive power and heat. A solution for this important problem is based on heterogeneity. In this paper, we analyze power consumption on heterogeneous systems, benchmarking a bioinformatics kernel within the framework of virtual screening methods. Cores and frequencies are tuned to further improve the performance or energy efficiency on those architectures. Our experimental results show that targeted low‐cost systems are the lowest power consumption platforms, although the most energy efficient platform and the best suited for performance improvement is the Kepler GK110 graphics processing unit from Nvidia by using compute unified device architecture. Finally, the open computing language version of virtual screening shows a remarkable performance penalty compared with its compute unified device architecture counterpart.Ingeniería, Industria y Construcció

    METADOCK: A parallel metaheuristic schema for virtual screening methods

    Get PDF
    Virtual screening through molecular docking can be translated into an optimization problem, which can be tackled with metaheuristic methods. The interaction between two chemical compounds (typically a protein, enzyme or receptor, and a small molecule, or ligand) is calculated by using highly computationally demanding scoring functions that are computed at several binding spots located throughout the protein surface. This paper introduces METADOCK, a novel molecular docking methodology based on parameterized and parallel metaheuristics and designed to leverage heterogeneous computers based on heterogeneous architectures. The application decides the optimization technique at running time by setting a configuration schema. Our proposed solution finds a good workload balance via dynamic assignment of jobs to heterogeneous resources which perform independent metaheuristic executions when computing different molecular interactions required by the scoring functions in use. A cooperative scheduling of jobs optimizes the quality of the solution and the overall performance of the simulation, so opening a new path for further developments of virtual screening methods on high-performance contemporary heterogeneous platforms.Ingeniería, Industria y Construcció

    A high-performance IoT solution to reduce frost damages in stone fruits

    Full text link
    [EN] Agriculture is one of the key sectors where technology is opening new opportunities to break up the market. The Internet of Things (IoT) could reduce the production costs and increase the product quality by providing intelligence services via IoT analytics. However, the hard weather conditions and the lack of connectivity in this field limit the successful deployment of such services as they require both, ie, fully connected infrastructures and highly computational resources. Edge computing has emerged as a solution to bring computing power in close proximity to the sensors, providing energy savings, highly responsive web services, and the ability to mask transient cloud outages. In this paper, we propose an IoT monitoring system to activate anti-frost techniques to avoid crop loss, by defining two intelligent services to detect outliers caused by the sensor errors. The former is a nearest neighbor technique and the latter is the k-means algorithm, which provides better quality results but it increases the computational cost. Cloud versus edge computing approaches are analyzed by targeting two different low-power GPUs. Our experimental results show that cloud-based approaches provides highest performance in general but edge computing is a compelling alternative to mask transient cloud outages and provide highly responsive data analytic services in technologically hostile environments.This work was partially supported by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants TIN2016-78799-P (AEI/FEDER, UE) and RTC-2017-6389-5. Finally, we thank the farmers for the availability of their resources to be able to asses and improve the IoT monitoring system proposed.Guillén-Navarro, MA.; Martínez-España, R.; López, B.; Cecilia-Canales, JM. (2021). A high-performance IoT solution to reduce frost damages in stone fruits. Concurrency and Computation: Practice and Experience (Online). 33(2):1-14. https://doi.org/10.1002/cpe.529911433

    Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)

    Full text link
    [EN] The Mar Menor is a hypersaline coastal lagoon with high environmental value and a characteristic example of a highly anthropized hydro-ecosystem located in the southeast of Spain. An unprecedented eutrophication crisis in 2016 and 2019 with abrupt changes in the quality of its waters caused a great social alarm. Understanding and modeling the level of a eutrophication indicator, such as chlorophyll-a (Chl-a), benefits the management of this complex system. In this study, we investigate the potential machine learning (ML) methods to predict the level of Chl-a. Particularly, Multilayer Neural Networks (MLNNs) and Support Vector Regressions (SVRs) are evaluated using as a target dataset information of up to nine different water quality parameters. The most relevant input combinations were extracted using wrapper feature selection methods which simplified the structure of the model, resulting in a more accurate and efficient procedure. Although the performance in the validation phase showed that SVR models obtained better results than MLNNs, experimental results indicated that both ML algorithms provide satisfactory results in the prediction of Chl-a concentration, reaching up to 0.7 R-CV(2) (cross-validated coefficient of determination) for the best-fit models.This research was partially funded by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18, and by Spanish Ministry of Science, Innovation and Universities under grants RTI2018-096384-B-I00 and RTC-2017-6389-5.Jimeno-Sáez, P.; Senent-Aparicio, J.; Cecilia-Canales, JM.; Pérez-Sánchez, J. (2020). Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). International Journal of Environmental research and Public Health (Online). 17(4):1-14. https://doi.org/10.3390/ijerph17041189S114174Pérez-Ruzafa, A., Pérez-Ruzafa, I. M., Newton, A., & Marcos, C. (2019). Coastal Lagoons: Environmental Variability, Ecosystem Complexity, and Goods and Services Uniformity. Coasts and Estuaries, 253-276. doi:10.1016/b978-0-12-814003-1.00015-0Kennish, M. J. (2015). Coastal Lagoons. Encyclopedia of Earth Sciences Series, 140-143. doi:10.1007/978-94-017-8801-4_47García-Ayllón, S. (2019). New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. Sustainability, 11(4), 1039. doi:10.3390/su11041039Le Moal, M., Gascuel-Odoux, C., Ménesguen, A., Souchon, Y., Étrillard, C., Levain, A., … Pinay, G. (2019). Eutrophication: A new wine in an old bottle? Science of The Total Environment, 651, 1-11. doi:10.1016/j.scitotenv.2018.09.139Alcolea, A., Contreras, S., Hunink, J. E., García-Aróstegui, J. L., & Jiménez-Martínez, J. (2019). Hydrogeological modelling for the watershed management of the Mar Menor coastal lagoon (Spain). Science of The Total Environment, 663, 901-914. doi:10.1016/j.scitotenv.2019.01.375Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41(1), 199-219. doi:10.1080/00785236.1995.10422044Huang, J., Gao, J., & Zhang, Y. (2015). Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology, 16(3), 179-191. doi:10.1007/s10201-015-0454-7Canfield, D. E. (1983). PREDICTION OF CHLOROPHYLL A CONCENTRATIONS IN FLORIDA LAKES: THE IMPORTANCE OF PHOSPHORUS AND NITROGEN. Journal of the American Water Resources Association, 19(2), 255-262. doi:10.1111/j.1752-1688.1983.tb05323.xPhillips, G., Pietiläinen, O.-P., Carvalho, L., Solimini, A., Lyche Solheim, A., & Cardoso, A. C. (2008). Chlorophyll–nutrient relationships of different lake types using a large European dataset. Aquatic Ecology, 42(2), 213-226. doi:10.1007/s10452-008-9180-0EL PAÍS https://elpais.com/elpais/2019/10/22/inenglish/1571743580_215496.htmlGarcía-Ayllón, S. (2017). Integrated management in coastal lagoons of highly complexity environments: Resilience comparative analysis for three case-studies. Ocean & Coastal Management, 143, 16-25. doi:10.1016/j.ocecoaman.2016.10.007Garcia-Ayllon, S. (2018). The Integrated Territorial Investment (ITI) of the Mar Menor as a model for the future in the comprehensive management of enclosed coastal seas. Ocean & Coastal Management, 166, 82-97. doi:10.1016/j.ocecoaman.2018.05.004Pérez-Ruzafa, A., Campillo, S., Fernández-Palacios, J. M., García-Lacunza, A., García-Oliva, M., Ibañez, H., … Marcos, C. (2019). Long-Term Dynamic in Nutrients, Chlorophyll a, and Water Quality Parameters in a Coastal Lagoon During a Process of Eutrophication for Decades, a Sudden Break and a Relatively Rapid Recovery. Frontiers in Marine Science, 6. doi:10.3389/fmars.2019.00026Iglesias, C., Martínez Torres, J., García Nieto, P. J., Alonso Fernández, J. R., Díaz Muñiz, C., Piñeiro, J. I., & Taboada, J. (2013). Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resources Management, 28(2), 319-331. doi:10.1007/s11269-013-0487-9Najah, A., El-Shafie, A., Karim, O. A., & El-Shafie, A. H. (2012). Application of artificial neural networks for water quality prediction. Neural Computing and Applications, 22(S1), 187-201. doi:10.1007/s00521-012-0940-3Li, X., Cheng, Z., Yu, Q., Bai, Y., & Li, C. (2017). Water-Quality Prediction Using Multimodal Support Vector Regression: Case Study of Jialing River, China. Journal of Environmental Engineering, 143(10), 04017070. doi:10.1061/(asce)ee.1943-7870.0001272Su, J., Wang, X., Zhao, S., Chen, B., Li, C., & Yang, Z. (2015). A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs. Water, 7(12), 1610-1627. doi:10.3390/w7041610Abba, S. I., Hadi, S. J., & Abdullahi, J. (2017). River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Computer Science, 120, 75-82. doi:10.1016/j.procs.2017.11.212Juntunen, P., Liukkonen, M., Pelo, M., Lehtola, M. J., & Hiltunen, Y. (2012). Modelling of Water Quality: An Application to a Water Treatment Process. Applied Computational Intelligence and Soft Computing, 2012, 1-9. doi:10.1155/2012/846321Li, X., Sha, J., & Wang, Z. (2016). A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen. Hydrology Research, 48(5), 1214-1225. doi:10.2166/nh.2016.149Charulatha, G., Srinivasalu, S., Uma Maheswari, O., Venugopal, T., & Giridharan, L. (2017). Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arabian Journal of Geosciences, 10(6). doi:10.1007/s12517-017-2867-6Keller, S., Maier, P., Riese, F., Norra, S., Holbach, A., Börsig, N., … Hinz, S. (2018). Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity. International Journal of Environmental Research and Public Health, 15(9), 1881. doi:10.3390/ijerph15091881Li, X., Sha, J., & Wang, Z.-L. (2017). Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water, 9(7), 524. doi:10.3390/w9070524Yi, H.-S., Park, S., An, K.-G., & Kwak, K.-C. (2018). Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. International Journal of Environmental Research and Public Health, 15(10), 2078. doi:10.3390/ijerph15102078Nazeer, M., Bilal, M., Alsahli, M., Shahzad, M., & Waqas, A. (2017). Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. ISPRS International Journal of Geo-Information, 6(11), 360. doi:10.3390/ijgi6110360Erena, Domínguez, Aguado, Soria, & García-Galiano. (2019). Monitoring Coastal Lagoon Water Quality Through Remote Sensing: The Mar Menor as a Case Study. Water, 11(7), 1468. doi:10.3390/w11071468García-Oliva, M., Marcos, C., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., & Pérez-Ruzafa, A. (2019). Modelling the impact of dredging inlets on the salinity and temperature regimes in coastal lagoons. Ocean & Coastal Management, 180, 104913. doi:10.1016/j.ocecoaman.2019.104913López-Ballesteros, A., Senent-Aparicio, J., Srinivasan, R., & Pérez-Sánchez, J. (2019). Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy, 9(10), 576. doi:10.3390/agronomy9100576Senent-Aparicio, J., Pérez-Sánchez, J., García-Aróstegui, J., Bielsa-Artero, A., & Domingo-Pinillos, J. (2015). Evaluating Groundwater Management Sustainability under Limited Data Availability in Semiarid Zones. Water, 7(12), 4305-4322. doi:10.3390/w7084305Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2-3), 183-193. doi:10.1016/j.gexplo.2007.04.011Conesa, H. M., & Jiménez-Cárceles, F. J. (2007). The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Marine Pollution Bulletin, 54(7), 839-849. doi:10.1016/j.marpolbul.2007.05.007Domingo-Pinillos, J., Senent-Aparicio, J., García-Aróstegui, J., & Baudron, P. (2018). Long Term Hydrodynamic Effects in a Semi-Arid Mediterranean Multilayer Aquifer: Campo de Cartagena in South-Eastern Spain. Water, 10(10), 1320. doi:10.3390/w10101320Stefanova, A., Hesse, C., & Krysanova, V. (2015). Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment. Water, 7(12), 1538-1567. doi:10.3390/w7041538Velasco, J., Lloret, J., Millan, A., Marin, A., Barahona, J., Abellan, P., & Sanchez-Fernandez, D. (2006). Nutrient And Particulate Inputs Into The Mar Menor Lagoon (Se Spain) From An Intensive Agricultural Watershed. Water, Air, and Soil Pollution, 176(1-4), 37-56. doi:10.1007/s11270-006-2859-8García-Oliva, M., Pérez-Ruzafa, Á., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., & Marcos, C. (2018). Assessing the Hydrodynamic Response of the Mar Menor Lagoon to Dredging Inlets Interventions through Numerical Modelling. Water, 10(7), 959. doi:10.3390/w10070959Wei, B., Sugiura, N., & Maekawa, T. (2001). Use of artificial neural network in the prediction of algal blooms. Water Research, 35(8), 2022-2028. doi:10.1016/s0043-1354(00)00464-4(2000). Artificial Neural Networks in Hydrology. I: Preliminary Concepts. Journal of Hydrologic Engineering, 5(2), 115-123. doi:10.1061/(asce)1084-0699(2000)5:2(115)Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., & Pulido-Velazquez, D. (2018). A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water, 10(2), 192. doi:10.3390/w10020192Nguyen, V. D., Tan, R. R., Brondial, Y., & Fuchino, T. (2007). Prediction of vapor–liquid equilibrium data for ternary systems using artificial neural networks. Fluid Phase Equilibria, 254(1-2), 188-197. doi:10.1016/j.fluid.2007.03.014Bekkari, N., & Zeddouri, A. (2019). Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Management of Environmental Quality: An International Journal, 30(3), 593-608. doi:10.1108/meq-04-2018-0084Zhang, Y., Gao, X., Smith, K., Inial, G., Liu, S., Conil, L. B., & Pan, B. (2019). Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Research, 164, 114888. doi:10.1016/j.watres.2019.114888Naghibi, S. A., Ahmadi, K., & Daneshi, A. (2017). Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resources Management, 31(9), 2761-2775. doi:10.1007/s11269-017-1660-3Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical Software, 28(5). doi:10.18637/jss.v028.i05Caret: Classification and Regression Training, R Package Version 6.0-84 https://CRAN.R-project.org/package=caretMaier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software, 25(8), 891-909. doi:10.1016/j.envsoft.2010.02.003Kumar, S., & Bucher, P. (2016). Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. BMC Bioinformatics, 17(S1). doi:10.1186/s12859-015-0846-zMjalli, F. S., Al-Asheh, S., & Alfadala, H. E. (2007). Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management, 83(3), 329-338. doi:10.1016/j.jenvman.2006.03.004Palani, S., Liong, S.-Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586-1597. doi:10.1016/j.marpolbul.2008.05.021Kuo, J.-T., Hsieh, M.-H., Lung, W.-S., & She, N. (2007). Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling, 200(1-2), 171-177. doi:10.1016/j.ecolmodel.2006.06.018Jimeno-Sáez, P., Senent-Aparicio, J., Pérez-Sánchez, J., Pulido-Velazquez, D., & Cecilia, J. (2017). Estimation of Instantaneous Peak Flow Using Machine-Learning Models and Empirical Formula in Peninsular Spain. Water, 9(5), 347. doi:10.3390/w905034

    Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms

    Get PDF
    [EN] Internet of Things (IoT) is becoming a new socioeconomic revolution in which data and immediacy are the main ingredients. IoT generates large datasets on a daily basis but it is currently considered as "dark data", i.e., data generated but never analyzed. The efficient analysis of this data is mandatory to create intelligent applications for the next generation of IoT applications that benefits society. Artificial Intelligence (AI) techniques are very well suited to identifying hidden patterns and correlations in this data deluge. In particular, clustering algorithms are of the utmost importance for performing exploratory data analysis to identify a set (a.k.a., cluster) of similar objects. Clustering algorithms are computationally heavy workloads and require to be executed on high-performance computing clusters, especially to deal with large datasets. This execution on HPC infrastructures is an energy hungry procedure with additional issues, such as high-latency communications or privacy. Edge computing is a paradigm to enable light-weight computations at the edge of the network that has been proposed recently to solve these issues. In this paper, we provide an in-depth analysis of emergent edge computing architectures that include low-power Graphics Processing Units (GPUs) to speed-up these workloads. Our analysis includes performance and power consumption figures of the latest Nvidia's AGX Xavier to compare the energy-performance ratio of these low-cost platforms with a high-performance cloud-based counterpart version. Three different clustering algorithms (i.e., k-means, Fuzzy Minimals (FM), and Fuzzy C-Means (FCM)) are designed to be optimally executed on edge and cloud platforms, showing a speed-up factor of up to 11x for the GPU code compared to sequential counterpart versions in the edge platforms and energy savings of up to 150% between the edge computing and HPC platforms.This work has been partially supported by the Spanish Ministry of Science and Innovation, under the Ramon y Cajal Program (Grant No. RYC2018-025580-I) and under grants RTI2018-096384-B-I00, RTC-2017-6389-5 and RTC2019-007159-5 and by the Fundacion Seneca del Centro de Coordinacion de la Investigacion de la Region de Murcia under Project 20813/PI/18.Cecilia-Canales, JM.; Cano, J.; Morales-García, J.; Llanes, A.; Imbernón, B. (2020). Evaluation of Clustering Algorithms on GPU-Based Edge Computing Platforms. Sensors. 20(21):1-19. https://doi.org/10.3390/s20216335S1192021Gebauer, H., Fleisch, E., Lamprecht, C., & Wortmann, F. (2020). Growth paths for overcoming the digitalization paradox. Business Horizons, 63(3), 313-323. doi:10.1016/j.bushor.2020.01.005Guillén, M. A., Llanes, A., Imbernón, B., Martínez-España, R., Bueno-Crespo, A., Cano, J.-C., & Cecilia, J. M. (2020). Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. The Journal of Supercomputing, 77(1), 818-840. doi:10.1007/s11227-020-03288-wWang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144-156. doi:10.1016/j.jmsy.2018.01.003Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: foundations and developments. Electronic Markets, 25(3), 179-188. doi:10.1007/s12525-015-0196-8Pramanik, M. I., Lau, R. Y. K., Demirkan, H., & Azad, M. A. K. (2017). Smart health: Big data enabled health paradigm within smart cities. Expert Systems with Applications, 87, 370-383. doi:10.1016/j.eswa.2017.06.027Weber, M., & Podnar Žarko, I. (2019). A Regulatory View on Smart City Services. Sensors, 19(2), 415. doi:10.3390/s19020415Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in Internet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218. doi:10.1049/trit.2018.1008Monti, L., Vincenzi, M., Mirri, S., Pau, G., & Salomoni, P. (2020). RaveGuard: A Noise Monitoring Platform Using Low-End Microphones and Machine Learning. Sensors, 20(19), 5583. doi:10.3390/s20195583Kumar, P., Sinha, K., Nere, N. K., Shin, Y., Ho, R., Mlinar, L. B., & Sheikh, A. Y. (2020). A machine learning framework for computationally expensive transient models. Scientific Reports, 10(1). doi:10.1038/s41598-020-67546-wMittal, S., & Vetter, J. S. (2015). A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Computing Surveys, 47(4), 1-35. doi:10.1145/2788396Singh, D., & Reddy, C. K. (2014). A survey on platforms for big data analytics. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0008-6Khayyat, M., Elgendy, I. A., Muthanna, A., Alshahrani, A. S., Alharbi, S., & Koucheryavy, A. (2020). Advanced Deep Learning-Based Computational Offloading for Multilevel Vehicular Edge-Cloud Computing Networks. IEEE Access, 8, 137052-137062. doi:10.1109/access.2020.3011705Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30-39. doi:10.1109/mc.2017.9Capra, M., Peloso, R., Masera, G., Roch, M. R., & Martina, M. (2019). Edge Computing: A Survey On the Hardware Requirements in the Internet of Things World. Future Internet, 11(4), 100. doi:10.3390/fi11040100Lu, H., Gu, C., Luo, F., Ding, W., & Liu, X. (2020). Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Generation Computer Systems, 102, 847-861. doi:10.1016/j.future.2019.07.019Mimmack, G. M., Mason, S. J., & Galpin, J. S. (2001). Choice of Distance Matrices in Cluster Analysis: Defining Regions. Journal of Climate, 14(12), 2790-2797. doi:10.1175/1520-0442(2001)0142.0.co;2Gimenez, C. (2006). Logistics integration processes in the food industry. International Journal of Physical Distribution & Logistics Management, 36(3), 231-249. doi:10.1108/09600030610661813Chang, P.-C., Liu, C.-H., & Fan, C.-Y. (2009). Data clustering and fuzzy neural network for sales forecasting: A case study in printed circuit board industry. Knowledge-Based Systems, 22(5), 344-355. doi:10.1016/j.knosys.2009.02.005Zheng, B., Yoon, S. W., & Lam, S. S. (2014). Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Systems with Applications, 41(4), 1476-1482. doi:10.1016/j.eswa.2013.08.044Woodley, A., Tang, L.-X., Geva, S., Nayak, R., & Chappell, T. (2019). Parallel K-Tree: A multicore, multinode solution to extreme clustering. Future Generation Computer Systems, 99, 333-345. doi:10.1016/j.future.2018.09.038Kwedlo, W., & Czochanski, P. J. (2019). A Hybrid MPI/OpenMP Parallelization of KK -Means Algorithms Accelerated Using the Triangle Inequality. IEEE Access, 7, 42280-42297. doi:10.1109/access.2019.2907885Liu, B., He, S., He, D., Zhang, Y., & Guizani, M. (2019). A Spark-Based Parallel Fuzzy cc -Means Segmentation Algorithm for Agricultural Image Big Data. IEEE Access, 7, 42169-42180. doi:10.1109/access.2019.2907573Baydoun, M., Ghaziri, H., & Al-Husseini, M. (2018). CPU and GPU parallelized kernel K-means. The Journal of Supercomputing, 74(8), 3975-3998. doi:10.1007/s11227-018-2405-7Li, Y., Zhao, K., Chu, X., & Liu, J. (2013). Speeding up k-Means algorithm by GPUs. Journal of Computer and System Sciences, 79(2), 216-229. doi:10.1016/j.jcss.2012.05.004Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., & Toraldo, G. (2019). A GPU-accelerated parallel K-means algorithm. Computers & Electrical Engineering, 75, 262-274. doi:10.1016/j.compeleceng.2017.12.002Al-Ayyoub, M., Abu-Dalo, A. M., Jararweh, Y., Jarrah, M., & Sa’d, M. A. (2015). A GPU-based implementations of the fuzzy C-means algorithms for medical image segmentation. The Journal of Supercomputing, 71(8), 3149-3162. doi:10.1007/s11227-015-1431-yAit Ali, N., Cherradi, B., El Abbassi, A., Bouattane, O., & Youssfi, M. (2018). GPU fuzzy c-means algorithm implementations: performance analysis on medical image segmentation. Multimedia Tools and Applications, 77(16), 21221-21243. doi:10.1007/s11042-017-5589-6Timón, I., Soto, J., Pérez-Sánchez, H., & Cecilia, J. M. (2016). Parallel implementation of fuzzy minimals clustering algorithm. Expert Systems with Applications, 48, 35-41. doi:10.1016/j.eswa.2015.11.011Cebrian, J. M., Imbernón, B., Soto, J., García, J. M., & Cecilia, J. M. (2020). High-throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer Systems, 106, 401-411. doi:10.1016/j.future.2020.01.022Cecilia, J. M., Timon, I., Soto, J., Santa, J., Pereniguez, F., & Munoz, A. (2018). High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2246-2257. doi:10.1109/tits.2018.2816741Sriramakrishnan, P., Kalaiselvi, T., & Rajeswaran, R. (2019). Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybernetics and Biomedical Engineering, 39(2), 470-487. doi:10.1016/j.bbe.2019.02.002Fang, Y., Chen, Q., & Xiong, N. (2019). A multi-factor monitoring fault tolerance model based on a GPU cluster for big data processing. Information Sciences, 496, 300-316. doi:10.1016/j.ins.2018.04.053Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. da F., & Rodrigues, F. A. (2019). Clustering algorithms: A comparative approach. PLOS ONE, 14(1), e0210236. doi:10.1371/journal.pone.0210236Pandove, D., Goel, S., & Rani, R. (2018). Systematic Review of Clustering High-Dimensional and Large Datasets. ACM Transactions on Knowledge Discovery from Data, 12(2), 1-68. doi:10.1145/3132088Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7Soto, J., Flores-Sintas, A., & Palarea-Albaladejo, J. (2008). Improving probabilities in a fuzzy clustering partition. Fuzzy Sets and Systems, 159(4), 406-421. doi:10.1016/j.fss.2007.08.016Kolen, J. F., & Hutcheson, T. (2002). Reducing the time complexity of the fuzzy c-means algorithm. IEEE Transactions on Fuzzy Systems, 10(2), 263-267. doi:10.1109/91.99512
    corecore